Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.915
Filtrar
1.
Biotechnol J ; 19(4): e2300466, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581094

RESUMO

The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.


Assuntos
Carbonato de Cálcio , Ácidos Nicotínicos , Sporosarcina , Carbonato de Cálcio/química , Urease/metabolismo , Biomassa , Ureia/química , Ureia/metabolismo , Vitaminas , Aminoácidos , Glucose
2.
Int J Biol Macromol ; 264(Pt 2): 130773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467211

RESUMO

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.9 MPa of tensile strength and 42 % of elongation at break at 53 % RH. These results are supported by field emission scanning electron microscopy (FESEM) micrographs, where a limited concentration of voids was observed in the samples with sorbitol and urea, indicating a better interaction between starch and the plasticizers. Thermogravimetric analysis (TGA) shows that urea and sorbitol increase the thermal stability of TPS in comparison to the glycerol-plasticized sample. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) verify the increase in stiffness of the sorbitol and urea plasticized TPS and also illustrate an increase in the glass transition temperature of both samples in comparison to the glycerol-plasticized sample. Glass transition temperatures of 45 °C were achieved for the sample with sorbitol.


Assuntos
Mangifera , Plastificantes , Plastificantes/química , Amido/química , Glicerol/química , Farinha , Plásticos , Sorbitol/química , Ureia/química
3.
J Environ Manage ; 356: 120615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518499

RESUMO

Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.


Assuntos
Solventes Eutéticos Profundos , Esgotos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Colina/química , Metano , Ureia/química , Reatores Biológicos
4.
Proc Natl Acad Sci U S A ; 121(14): e2317825121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536756

RESUMO

Trimethylamine-N-oxide (TMAO) and urea are metabolites that are used by some marine animals to maintain their cell volume in a saline environment. Urea is a well-known denaturant, and TMAO is a protective osmolyte that counteracts urea-induced protein denaturation. TMAO also has a general protein-protective effect, for example, it counters pressure-induced protein denaturation in deep-sea fish. These opposing effects on protein stability have been linked to the spatial relationship of TMAO, urea, and protein molecules. It is generally accepted that urea-induced denaturation proceeds through the accumulation of urea at the protein surface and their subsequent interaction. In contrast, it has been suggested that TMAO's protein-stabilizing effects stem from its exclusion from the protein surface, and its ability to deplete urea from protein surfaces; however, these spatial relationships are uncertain. We used neutron diffraction, coupled with structural refinement modeling, to study the spatial associations of TMAO and urea with the tripeptide derivative glycine-proline-glycinamide in aqueous urea, aqueous TMAO, and aqueous urea-TMAO (in the mole ratio 1:2 TMAO:urea). We found that TMAO depleted urea from the peptide's surface and that while TMAO was not excluded from the tripeptide's surface, strong atomic interactions between the peptide and TMAO were limited to hydrogen bond donating peptide groups. We found that the repartition of urea, by TMAO, was associated with preferential TMAO-urea bonding and enhanced urea-water hydrogen bonding, thereby anchoring urea in the bulk solution and depleting urea from the peptide surface.


Assuntos
Peptídeos , Ureia , Animais , Ureia/química , Peptídeos/química , Água/química , Metilaminas/química , Proteínas de Membrana
5.
Acta Pharm ; 74(1): 37-59, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554382

RESUMO

A diastereomeric mixture of racemic 3-phthalimido-b-lactam 2a/2b was synthesized by the Staudinger reaction of carboxylic acid activated with 2-chloro-1-methylpyridinium iodide and imine 1. The amino group at the C3 position of the b-lactam ring was used for further structural upgrade. trans-b-lactam ureas 4a-t were prepared by the condensation reaction of the amino group of b-lactam ring with various aromatic and aliphatic isocyanates. Antimicrobial activity of compounds 4a-t was evaluated in vitro and neither antibacterial nor antifungal activity were observed. Several of the newly synthesized trans-b-lactam ureas 4a-c, 4f, 4h, 4n, 4o, 4p, and 4s were evaluated for in vitro antiproliferative activity against liver hepatocellular carcinoma (HepG2), ovarian carcinoma (A2780), breast adenocarcinoma (MCF7) and untransformed human fibroblasts (HFF1). The b-lactam urea 4o showed the most potent antiproliferative activity against the ovarian carcinoma (A2780) cell line. Compounds 4o and 4p exhibited strong cytotoxic effects against human non-tumor cell line HFF1. The b-lactam ureas 4a-t were estimated to be soluble and membrane permeable, moderately lipophilic molecules (logP 4.6) with a predisposition to be CYP3A4 and P-glycoprotein substrates. The tools PASS and SwissTargetPrediction could not predict biological targets for compounds 4a-t with high probability, pointing to the novelty of their structure. Considering low toxicity risk, molecules 4a and 4f can be selected as the most promising candidates for further structure modifications.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Ovarianas , Humanos , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/farmacologia , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células
6.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355061

RESUMO

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Assuntos
Capsaicina , Ureia , Ureia/química , Capsaicina/farmacologia , Relação Estrutura-Atividade , Modelos Moleculares , Pirazóis/farmacologia , Canais de Cátion TRPV
7.
Int J Biol Macromol ; 262(Pt 2): 130103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346616

RESUMO

Extraction of seaweed compounds using Deep Eutectic Solvents (DES) has shown high interest. Quantification, however, is challenging due to interactions with DES components. In this research work, three chemical separation techniques were investigated to isolate and quantify alginate from a set of choline chloride-based DES. While choline chloride served as the hydrogen bond acceptor (HBA); Urea, Ethylene Glycol, Propylene Glycol, Glycerol, Sorbitol, Xylitol and Glucose were used as hydrogen bond donors (HBD). DES containing sodium alginate were subjected to precipitation with sulfuric acid 0.2 M (pH 1.6), ethanol-water mixture (80 % v/v) and calcium chloride (1 % w/v CaCl2·2H2O). Alginate in precipitates was quantified and used to evaluate the performance of each separation technique. The highest recovery yields (51.2 ± 1.3 %) were obtained using the ethanol-water mixture followed by calcium chloride (45.7 ± 1.2 %), except for polyols (e.g. sorbitol). The lowest recovery yields were obtained with acid, with a particularly low recovery yield when urea was used as HBD (9.6 ± 1.3 %). Estimations of ManA/GulA ratios showed lower values for precipitates from DES compared to the ones obtained from water. This research shows ethanolic precipitation as a suitable method for alginate separation from the studied set of choline chloride-based DES.


Assuntos
Colina , Solventes Eutéticos Profundos , Colina/química , Solventes/química , Alginatos , Cloreto de Cálcio , Água , Etanol , Ureia/química , Sorbitol
8.
Carbohydr Res ; 536: 109054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350405

RESUMO

The dissolution of microcrystalline cellulose (MCC) in a urea-NaOH system is beneficial for its mechanical processing. The apparent MCC solubility was greatly improved to 14 wt% under a slow-cooling condition with a cooling rate of -0.3 °C/min. The cooling curve or thermal history played a crucial role in the dissolution process. An exotherm (-54.7 ± 3 J/g MCC) was detected by DSC only under the slow-cooling condition, and the cryogenic dissolution of MCC was attributed to the exothermic interaction between MCC and solvent. More importantly, the low cooling rate promoted the dissolution of MCC by providing enough time for the diffusion of OH- and urea into MCC granules at higher temperatures. The Raman spectral data showed that the intramolecularly and intermolecularly hydrogen bonds in cellulose were cleaved by NaOH and urea, respectively. XPS and solid-state 13C NMR results showed that hydrogen bonds were generated after dissolution, and a dual-hydrogen-bond binding mode between urea and cellulose was confirmed by DFT calculations. Both the decrease of enthalpy and increase of entropy dominated the spontaneity of MCC dissolution, and that is the reason for the indispensability of cryogenic environment. The high apparent solubility of MCC in the slow-cooling process and the dissolution mechanism are beneficial for the studies on cellulose modification and mechanical processing.


Assuntos
Álcalis , Ureia , Ureia/química , Hidróxido de Sódio/química , Solubilidade , Celulose/química
9.
Int J Biol Macromol ; 261(Pt 1): 129777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286364

RESUMO

In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.


Assuntos
Celulose , Formiatos , Nanofibras , Celulose/química , Solventes Eutéticos Profundos , Nanofibras/química , Solventes/química , Ureia/química
10.
Macromol Rapid Commun ; 45(8): e2300699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224144

RESUMO

Polymer dielectrics with high dielectric constant are urgently demanded for potential electrical and pulsed power applications. The design of polymers with side chains containing dipolar groups is considered an effective method for preparing materials with a high dielectric constant and low loss. This study synthesizes and comprehensively compare the dielectric properties of novel polyimides with side chains containing urea (BU-PI), carbamate (BC-PI), and sulfonyl (BS-PI) functional groups. The novel polyimides exhibit relatively high dielectric constant and low dielectric loss values due to the enhanced orientational polarization and suppressed dipole-dipole interactions of dipolar groups. In particular, BU-PI containing urea pendant groups presents the highest dielectric constant of 6.14 and reasonably low dielectric loss value of 0.0097. The strong γ transitions with low activation energies derived from dielectric spectroscopy measurements have been further evaluated to demonstrate the enhanced free rotational motion of urea pendant dipoles. In energy storage applications, BU-PI achieves a discharged energy density of 6.92 J cm-3 and a charge-discharge efficiency above 83% at 500 MV m-1. This study demonstrates that urea group, as dipolar pendant group, can provide polymers with better dielectric properties than the most commonly used sulfonyl groups.


Assuntos
Polímeros , Ureia , Polímeros/química , Ureia/química , Imidas/química , Estrutura Molecular , Carbamatos/química , Espectroscopia Dielétrica
11.
Int J Biol Macromol ; 260(Pt 1): 129476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232878

RESUMO

The inherent limitations of Cornstarch (CS) and Carboxymethyl Cellulose (CMC) membranes, such as brittleness, fragility, and water solubility, limit their use in controlled-release fertilizers. This study reports on the synthesis of crosslinked CMC/CS-20-E composite membranes using the casting technique, with epichlorohydrin (ECH) as the crosslinking agent in an acidic environment to crosslink CS and CMC. The synthesized composite film demonstrates remarkable water resistance, as evidenced by the insignificant alteration in its morphology and structure post 72 h of water immersion. Its flexibility is reflected in its capacity to endure knotting and bending, with an elongation at break reaching 78.1 %. Moreover, the degradation rate surpasses 90 % within a span of seven days. The CMC/CS-20-E-x-urea controlled-release fertilizer was subsequently produced using a layer-by-layer self-assembly technique, where urea particles were incorporated into the crosslinked composite solution. This CMC/CS-20-E-x-urea controlled-release fertilizer displayed superior controlled-release performance over a duration of seven days when juxtaposed with pure urea. In particular, the CMC/CS-20-E-3 %-urea controlled-release fertilizer showed a cumulative release rate of 84 % by the seventh day. The controlled-release fertilizers developed in this study offer a promising strategy for creating eco-friendly options that are crucial for fertilizing crops with short growth cycles.


Assuntos
Carboximetilcelulose Sódica , Fertilizantes , Fertilizantes/análise , Carboximetilcelulose Sódica/química , Zea mays , Preparações de Ação Retardada , Amido/química , Água/química , Ureia/química
12.
Bioorg Med Chem ; 100: 117604, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290306

RESUMO

Colistin is considered as the last-resort antibiotics to treat multi-drug resistant Gram-negative bacterial infections in humans. However, the clinical use of colistin was limited because of the apparition of chromosomal mutations and mobile colistin resistance genes in bacterial isolates. One promising strategy is to combine existing antibiotics with promising non-antibiotics to overcome the widespread emergence of antibiotic-resistant pathogens. Moreover, colistin resistance would be regulated by two component systems PhoP/PhoQ which leads to permanent synthesis of cationic groups compensating for Mg2+ deficiency. In this study, the synthesis of a small library of tryptamine urea derivatives was carried out. In addition, antibiotic susceptibility, antibiotic adjuvant screening and checkerboard assays were used to investigate the antibacterial activity of these synthesized compounds and the potential synergistic activity of their combination with colistin. Conformational analysis of the docked binding modes of the active compound in the predicted binding pocket of bacterial response regulator PhoP were carried out, to see if the active compound inhibits PhoP which is involved in colistin resistance. Finally, hemolytic activity studies have been conducted on the most active compound.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Triptaminas/química , Triptaminas/farmacologia , Ureia/química , Ureia/farmacologia
13.
Environ Res ; 241: 117617, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967706

RESUMO

Digestate is considered as an option for recycling resources and a part of the substitution for chemical fertilizers to reduce environmental impacts. However, its application may lead to significant nitrous oxide (N2O) emissions because of its high concentration of ammonium and degradable carbon. The research objectives are to evaluate how N2O emissions respond to digestate as compared to urea application and whether this depends on soil properties and moisture. Either digestate or urea (100 mg N kg-1) was applied with and without a nitrification inhibitor of 3,4-dimethylpyrazole phosphate (DMPP) to three soil types (fluvo-aquic soil, black soil, and latosol) under three different soil moisture conditions (45, 65, and 85% water-filled pore space (WFPS)) through microcosm incubations. Results showed that digestate- and urea-induced N2O emissions increased exponentially with soil moisture in the three studied soils, and the magnitude of the increase was much greater in the alkaline fluvo-aquic soil, coinciding with high net nitrification rate and transient nitrite accumulation. Compared with urea-amended soils, digestate led to significantly higher peaks in N2O and carbon dioxide (CO2) emissions, which might be due to stimulated rapid oxygen consumption and mineralized N supply. Digestate-induced N2O emissions were all more than one time higher than those induced by urea at the three moisture levels in the three studied soils, except at 85% WFPS in the fluvo-aquic soil. DMPP was more effective at mitigating N2O emissions (inhibitory efficacy: 73%-99%) in wetter digestate-fertilized soils. Overall, our study shows the contrasting effect of digestate to urea on N2O emissions under different soil properties and moisture levels. This is of particular value for determining the optimum of applying digestate under varying soil moisture conditions to minimize stimulated N2O emissions in specific soil properties.


Assuntos
Solo , Ureia , Solo/química , Ureia/química , Ureia/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Óxido Nitroso , Nitrificação , Fertilizantes , Agricultura
14.
J Chem Inf Model ; 64(1): 138-149, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37983534

RESUMO

Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.


Assuntos
Metilaminas , Água , Água/química , Metilaminas/química , Simulação de Dinâmica Molecular , Proteínas , Ureia/química , Soluções
15.
Int J Biol Macromol ; 256(Pt 1): 128355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995790

RESUMO

In this study, a biodegradable Schiff-base hydrogel urea, possessing substantial water retention and certain slow-release ability was designed and synthesized. Firstly, dialdehyde starch (DAS) and amine-terminated polyethylene glycol (PEG-(NH2)2) were synthesized using potato starch and polyethylene glycol. Then, a novel Schiff-base hydrogel (SH) was prepared through the in-situ reaction between the aldehyde group of DAS and the amino group of PEG-(NH2)2. Three SH based slow-release urea, designated as SHU1, SHU2, and SHU3 and distinguished by varying urea content, were obtained using SH as the substrate. Several characterizations and tests were conducted to determine the structure, thermal properties, morphology, swelling properties, sustainable use, water retention, and biodegradation properties of SH. Additionally, the slow-release behavior of SHU was studied. SEM results revealed that SH possessed a porous three-dimensional network structure, with a maximum water absorption capacity of 4440 % ± 6.23 %. Compared to pure urea, SHU exhibited better slow-release performance after 30 days of release in soil, with SHU1 having a residual nitrogen content of specifically 36.01 ± 0.57 % of the initial nitrogen content. A pot experiment with pakchoi substantiated the water retention and plant growth promotion properties of SHU. This study demonstrated a straightforward method for the preparation of starch-based Schiff-base hydrogels as fertilizer carriers.


Assuntos
Hidrogéis , Ureia , Hidrogéis/química , Ureia/química , Amido/química , Polietilenoglicóis , Bases de Schiff/química , Água/química , Nitrogênio
16.
J Labelled Comp Radiopharm ; 66(14): 467-472, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37941144

RESUMO

The veterinary drug nitrofurazone (5-nitro-2-furaldehyde semicarbazone) exhibits excellent antimicrobial properties but its application in food-producing animals is prohibited. The illegal use of nitrofurazone is regularly monitored by food regulatory agencies. Currently, semicarbazide (SEM) is used as a marker of nitrofurazone exposure. However, the use of SEM as a marker of nitrofurazone is under scrutiny after evidence of a high incidence of false positive tests. To overcome the current dilemma, it is necessary to identify a nitrofurazone-specific marker analyte which requires conducting nitrofurazone metabolism studies in food-producing animals. The use of carbon-14 labeled nitrofurazone would facilitate metabolism studies and structural elucidation of nitrofurazone metabolites of possible utility as a marker compound. In the present work, a synthetic method is described to procure radiolabeled nitrofurazone that incorporates 14 C- carbon at the semicarbazide moiety. The method incorporates 14 C-carbon via employing readily available and more economically affordable [14 C]-urea compared with [14 C]-semicarbazide. To the best of our knowledge, there is no report on the synthesis of 5-nitro-2-furaldehyde [14 C]-semicarbazone from 14 C-urea. The developed method involves monoamination of [14 C]-urea followed by a condensation reaction with 5-nitro-2-furaldehyde to produce 5-nitro-2-furaldehyde [14 C]-semicarbazone in 85% yield with greater than 98% radiochemical purity.


Assuntos
Nitrofurazona , Semicarbazonas , Animais , Ureia/química , Radioisótopos de Carbono
17.
J Enzyme Inhib Med Chem ; 38(1): 2274797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975322

RESUMO

Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.


Assuntos
Cloro , Flúor , Humanos , Epóxido Hidrolases , Ureia/farmacologia , Ureia/química , Simulação de Dinâmica Molecular
18.
Anal Chim Acta ; 1284: 341935, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996167

RESUMO

Urea is a common milk adulterant that falsely increases its protein content. Excessive consumption of urea is harmful to the kidney, liver, and gastrointestinal system. The conventional methods for urea detection in milk are time-consuming, costly, and require highly skilled operators. So, there is an increasing demand for the development of rapid, convenient, and cost-efficient methods for the detection of urea adulteration in milk. Herein, we report a novel colorimetric paper-based urea biosensor, consisting of a novel environment-friendly nanocomposite of halloysite nanotubes (HNT), that urease enzyme and an anthocyanin-rich extract, as a natural pH indicator are simultaneously immobilized into its internal and external surfaces. The biosensing mechanism of this biosensor is based on anthocyanin color change, which occurs due to urease-mediated hydrolysis of urea and pH increment of the environment. The colorimetric signal of this biosensor is measured through smartphone-assisted analysis of the mean RGB (Red-Green-Blue) intensity of samples and is capable of detecting urea with a detection limit of 0.2 mM, and a linear range from 0.5 to 100 mM. This biosensor has demonstrated promising results for the detection of urea in milk samples, in the presence of other milk adulterants and interferents.


Assuntos
Técnicas Biossensoriais , Ureia , Animais , Ureia/química , Urease/análise , Urease/química , Urease/metabolismo , Leite/química , Colorimetria , Smartphone , Antocianinas/análise , Técnicas Biossensoriais/métodos , Concentração de Íons de Hidrogênio
19.
Carbohydr Res ; 534: 108982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976957

RESUMO

A series of sulfopropyl chitins (SCs) with the degree of substitution (DS) ranging from 0.11 to 0.40 and high degree of acetylation (DA ≥ 0.82) were homogeneously synthesized by reacting chitin with sodium 3-chloro-2-hydroxypropanesulfonate (SCHPS) in NaOH/urea aqueous solutions under mild conditions. The structure and properties of SCs were characterized with 1H NMR, CP/MAS 13C NMR, FT-IR, XPS, XRD, elemental analysis, GPC, AFM, ζ-potential and rheological measurements. The mild reaction conditions resulted in less N-deacetylation and uniform structures with substitution occurring predominantly at the hydroxyl groups at C6 of the chitin backbone. The DS value for SC soluble in dilute alkali solution is as low as 0.16. SC exhibited good solubility in distilled water when its DS value reached 0.28. Water-soluble SCs self-assembled in water into micelles by the attractive hydrophobic and hydrogen-bonding interactions between polymer chains. The water-insoluble SC-2 with lower DS could thermally form smart hydrogels at body temperature (37 °C) in physiological condition. Moreover, the SCs exhibited good biocompatibility, making them suitable for biomedical applications.


Assuntos
Quitina , Ureia , Ureia/química , Quitina/química , Hidróxido de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Soluções
20.
ACS Appl Mater Interfaces ; 15(41): 48015-48026, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797325

RESUMO

Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid-liquid interface.


Assuntos
Grafite , Guanidina/química , Desnaturação Proteica , Ferritinas , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...